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1.0 Summary 
The DARPA Bootstrapped Learning (BL) program [1] was a research effort to build and evaluate 
an electronic learner who can be instructed by a human instructor in the style of human mentored 
learning (or, to support automated testing, by a machine instructor using natural instruction 
methods). The motivating goal of this effort was to support modification of systems via field 
instructability (versus programmed revision by the developers). The functionality of computer 
systems and devices as programmed by their developers often is rendered out of date, incomplete 
or obsolete particularly in the case of military systems fielded to be applied in constantly evolving 
situations against adversaries who adapt to our tactics. We denote our approach to field 
instructability as instructable computing because the learner is a computational entity acquiring 
executable knowledge by being taught/instructed rather than being programmed. The goal is to 
learn using the “same” instruction methods used between humans (as opposed, for example, to 
traditional machine learning techniques which are based on processing hundreds, if not thousands 
or more, annotated examples as supervisory input). Human-mentored learning is primarily based 
upon communication from an instructor, who has knowledge of the target of learning, to a student 
that does not have such knowledge. 

 

The BAE Systems team was responsible for curriculum construction, instructional mechanisms, 
and advising the government on the evaluation of the BL program. The co-contractor team led 
by SRI International was responsible for the machine learning algorithms. The objective of this 
report is to present BAE Systems’ results in developing instructional materials to test the SRI 
International learner (MABLE) [2], evaluating the results of learning of the electronic student 
and of control human subjects, and developing instructional techniques and mechanisms used to 
teach the electronic learner. The report covers a broad range of efforts, including the following 
four topics which are central to the BL approach: 

 

  Natural Instruction Methods (NIMs) – the BL program uses supervisory input that goes 
well beyond the standard annotated corpora of examples. NIMs are defined protocols that 
guide the content of information exchange between an instructor and the electronic 
student.  They govern the type of information that can be presented, the control vocabulary 
for the instructional interaction (though not the information content – this remains 
flexible), and the order of interaction. A powerful example of a NIM protocol is the 
relevance annotation which allows specifying attributes or predicates relevant to learning a 
concept. Relevance declarations allow a learner to focus its efforts and support learning-
by-example (and specifically from a very concise set of pedagogically selected examples). 

  Curriculum – curriculum definitions support automated testing of the learning system. A 
curriculum is a hierarchical structure for teaching concepts that build upon each other 
(i.e., bootstrapping). Individual concepts are defined in the curriculum via a set of 
parameterized instructional utterances that can be used to teach the concept. Curriculum 
artifacts contained enough detail to enable the automated teacher to effectively instruct 
the learning system. While the ultimate goal of the project is to support human 
instruction, the curriculum we developed serve as a corpus of training and testing 
examples that can be used to support future efforts to develop alternate bootstrapped 
learning algorithms. 
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  Domains – the BL learning approach is domain independent. Nevertheless, the program 
needed to choose specific domains and tasks to drive the instructional interaction. We 
developed a number of domains including: Blocks World, Unmanned Aerial Vehicle 
(UAV) control, International Space Station (ISS) subsystem control diagnosis, military 
ground movement planning (Armored Task Force (ATF)), and satellite ground station 
control diagnosis and repair. Selection of these domains proved critical to developing 
domain independent learning techniques as they require solving a breadth of problems 
(as opposed to focusing on a single domain – which would have resulted in teaching, and 
learning to the test). Proof of the domain independence of the learning techniques was 
provided by successful performance on the hidden domain (satellite ground station 
control). 
Development of multiple domains also revealed some fundamental modeling differences 
for these domains in terms of fundamental features such as: synchrony of actions, 
percept modeling of domain state, and causal proximity of actions. 

  Situated instructional interface – as the program proceeded, more emphasis was 
placed on instruction by human agents (as opposed to the automated teacher). A 
prototype instructional interface was developed as part of the BL Intelligence, 
Surveillance, and Reconnaissance (BL-ISR) application domain. Initial efforts at a 
disembodied conversational interface proved much less successful than the instructional 
interface situated in the interface of the BL-ISR domain simulator. Situated instruction 
allows an analyst to perform instruction more effectively as part of the overall task being 
performed. 

 

This report also describes an ancillary effort executed as part of the program. We present BL- 
ISR, an application of BAE Systems’ instructable computing approach with potential to 
improve the productivity of ISR analysts. 

 

Finally, we report on a pair of seedling efforts (Probabilistic Relational Ontological Web 
Language (PROWL) and Framework Adoption) that explored approaches to system 
longevity, complementing the instructable computing approach taken in the BL program. 

 

The overall results of the BL program demonstrate that natural instructional input is a 
powerful and concise alternative to typical instructional input provided to current machine 
learning (ML) systems. Natural instruction provides a variety of methods of teaching 
including: by-example, by-telling, and by-feedback. Instructional input was provided via 
curriculum definition, via 
command line interface, via situated interface, and even via natural language input. Each of 
these instructional techniques was validated as capable of providing the information necessary 
for concept acquisition. However, since the form of instructional input is so much more varied 
than, e.g., simple positive and negative training data, it does require definition of protocols 
(natural instructional methods) for the exchange of instructional content, along with interface 
mechanisms to facilitate provisioning of this information from a context that includes relevant 
objects and relations. The results also point to the feasibility of constructing individual 
learning methods that can take advantage of certain types of instructional input. 

 

The greatest remaining challenge, however, is to develop effective methods for individual 
learners to integrate their partial results to provide a unified result of learning. If the learning 
task is thought of as literally learning a program to accomplish a particular task or recognize a 
certain concept (which in fact is what the BL learners produced as their result of learning), 
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then integration of learning results amounts to the different learning modules authoring 
different partsof the resultant program and combining the individual pieces into a single 
whole. Integration of learning results remains an unsolved challenge. 
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2.0 Introduction 
The BL program was a Defense Advanced Research Projects Agency (DARPA) initiative aimed 
at advancing the state of the art in instructable computing. Its primary objective was to build an 
electronic student (e-student) that could be taught by a human instructor in the same ways that 
humans instruct one another. As BL would provide natural ways for a human to impart 
knowledge to a software learner, it would reduce or even remove the need for programming 
expertise; human instruction of e-students will make it possible to delegate tasks to computers 
that cannot be easily delegated today and will enable users to rapidly modify deployed systems. 

 

BL differs from other kinds of ML in several ways. Current ML is primarily a modeling tool; it 
is used to build models when we know something, but not everything, about some target 
problem.  Current ML is a process of discovery, and requires induction over large datasets to 
induce its models. There is no guarantee that target knowledge will be discovered. BL enables 
users to impart the target knowledge in a more direct fashion; moreover, because it involves 
"natural" ways to impart knowledge, it does not require programming expertise. BL supports 
conceptual bootstrapping; it leads to meaningful intermediary levels of learned concepts. E- 
students learn laddered-curricula in which lessons build on previous lessons, whereas in current 
ML, learning is generally from unstructured data. Like its human counterpart, an e-student 
assumes all necessary knowledge is possessed by the instructor, and its goal is to learn using the 
"same" instruction methods used between humans. 

 

Two teams performed in parallel to explore this new learning paradigm. Roughly divided, the 
Learning Team, led by SRI International, was charged with developing the e-student, 
incorporating several learning strategies [2,3,4]; the Curriculum Team, led by BAE Systems, 
developed the curricula that the e-student was expected to learn, an electronic teacher to execute 
the curricula (i.e., automatically instruct), and a framework that supports interactions between the 
two electronic agents. BAE Systems also conducted experiments to evaluate various aspects of the 
program, including an evaluation of the e-student for both hidden and known domains. The two 
teams worked together to define the formal language and the natural instruction methods 
used by both teams (either in teaching the curricula or learning from them). This report focuses 
on the activities and results of the Curriculum Team. 

 

Our BL framework includes three agents, whose interactions and relationships are shown in 
Figure 1. A teacher agent serves as a proxy for an eventual human teacher, instructing and 
testing the e-student; the automated teacher eased scaling and reproducibility for evaluation. The 
student agent is the embodiment of the e-student, typically employing a number of learning 
algorithms. The world agent serves as a proxy for a domain simulator. Over the three phases of 
the BL program we developed a set of laddered curricula in a variety of complex domains 
including Blocks World, UAV, diagnosis tasks for an ISS, ATF, planning robotic arm movements, 
and a hidden domain – satellite ground station monitoring and configuration. The hidden domain 
was kept secret from the Learning Team and used for formal testing and evaluation. 
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Figure 1: The Three Agents of our BL Framework 
 

As part of the BL framework, we developed IL (InterLingua) and ITL (InteracTion Language) 
[5, 6] to pass messages between agents in the BL framework. The e-student used a variety of 
machine learning algorithms to learn how to solve tasks in an arbitrary domain, where the 
automated-teacher instructed with a set of formally defined NIMs. For example, in using the 
teaching by example NIM the instructor may make gestures at relevant problem attributes, 
demonstrate actions in the domain, and provide explanations for why actions were taken. Human 
subjects were trained and tested using a human-accessible version of the hidden domain 
curriculum to serve as a benchmark against which the e-student could be measured. 

 

In addition to its core tasking (i.e., framework, curricula and e-student evaluation), the 
Curriculum Team conducted early experiments to explore approaches humans take for 
instructing others, two seedling efforts on technology complimentary to instructable computing, 
and completed a stand-alone BL-ISR prototype to explore and illustrate how BL might be used 
in practice by a human operator. 
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3.0 Methods, Assumptions, and Procedures 
The BL program encompassed a range of experimental, empirical, evaluation and proof of 
concept tasks and a range of methods and procedures to achieve them. These include the 
following: 

 

Software development activities: 
 

  Definition of the core BL communication languages 
  Development of the BL framework 
  Development of the automated teacher 

 

The software development aspect of the BL program was conducted primarily in the Java 
programming language and followed the standard BAE Systems research process model. The 
distinguishing feature of these development efforts was our close collaboration with the SRI 
International e-student team (often referred to simply as the Student Team). While the 
evaluation tasks in the project required a more arms-length approach, the development of 
software to integrate and test the e-student within the BL environment was conducted as a 
collaborative effort between BAE Systems and SRI International with SRI International helping 
BAE Systems to prioritize development tasks and with BAE Systems providing incremental 
releases to SRI International to facilitate their internal testing efforts. 

 

Evaluation activities: 
 

  Human benchmark evaluations 
  E-student evaluations 

 

The program evaluation tasks were structured to vet both the capabilities of the e-student and to 
calibrate the difficulty of the testing scenarios. Human benchmark evaluations were used to 
calibrate the test curriculum so that they were neither too hard (human could achieve a minimum 
of 80% success after training in the domain) nor too easy (human did not score greater than 20% 
before training). These test curricula were then used to test the e-student, which was required to 
demonstrate at least 75% of the human performance in order to be considered to have passed the 
tests. Testing also involved a hidden domain which the Student Team did not have access to. 
The potentially completely blind nature of this testing was mitigated by testing the e-student on 
diversity domains, access to which was shared with the Student Team. Informally, the diversity 
domains tested a range of learning problems including problems analogous to what would be seen 
in the hidden domain. The informal intuition behind this setup was that a learner that could pass 
the diversity domain testing should be able to pass the hidden domain testing (and this informal 
intuition was accompanied by an extensive analysis in Phase 2 to document the analogical 
similarity between diversity domains and the hidden domain). 

 

Test data / case creation activities: 
 

  Development of natural instruction method protocols 
  Development of diversity domains and simulators 
  Development of the hidden domain and simulator 

 

Development of test data for this program involved a combination of programming-like activities 
and instructional material development.  Natural instruction method protocols were developed to 
govern the testing interaction. NIMs are protocols in the computer science sense with precise 
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definitions and they are also cognitively inspired by human-to-human instructional techniques. 
Testing also required development of a computation simulator for the domains under test. Test 
domains were rich domains with a range of objects, actions, and side effects. Manipulation of 
blocks is an example of a very simple domain and even that required simulators. The only 
domain we imagined that would not have required a simulator would have been a purely abstract 
domain such as mathematical performance. The final component of producing test data was the 
production of curriculum in the various domains. These tasks required a combination of 
knowledge acquisition (to learn about and define the domain) and pedagogical construction of 
hierarchically structured curriculum lessons (the hierarchical structuring being crucial to 
demonstration of the “bootstrapped” nature of the learning approach). 

 

Proof of concept activities: 
 

  Development of the BL-ISR demonstration system 
 

In Phase 3 we combined the results of previous phases and our observation about what would be 
required to support instructional interactions with humans to produce a demonstration system of 
BL techniques applied in a situational instruction context to problems of ISR intelligence 
analysis. This activity was grounded in knowledge acquisition sessions with intelligence 
analysts, based on simulated Ground Moving Target Indicator (GMTI) data provided by the Air 
Force Research Laboratory (AFRL), and influenced by interactions with the GMTI analysis 
community. 

 

In parallel to our primary BL activities, we conducted a pair of seedling efforts (Framework 
Adoption and PROWL) to explore approaches to system longevity, complementing the 
instructable computing approach taken in the BL program. 

 

Seedling activities: 
 

  Framework Adoption 
  PROWL 

 

The Framework Adoption problem reduces to the problem of transferring knowledge of a 
software framework to individual engineers. Many methods of acquiring knowledge of software 
exist from instruction to self-study to trial-and-error. All of the existing methods have their 
drawbacks and most take the engineer off-task while engaging in learning. We proposed that all 
these methods may be augmented by machine assistance. Our approach had two main thrusts: use 
machine learning to discover the implicit idioms, conventions, and best practices for the use of a 
software framework and provide the engineer with context-sensitive GUI assistance that provides 
the relevant framework knowledge just-in-time. 

 

PROWL investigated application and extensions of social computing technologies to empower 
users. Under the guidance of its DARPA Program Manager it had two thrust areas. The first, the 
primary emphasis of our seedling effort, explored a new approach to searching large corpora of 
text to find relevant information exploiting a new approach to semantic markup. The end goal of 
a full PROWL program for Thrust 1 would be to provide automated cataloging for users to 
access available knowledge—data with context and understanding. The goal of our seedling 
effort was to demonstrate system concept feasibility. Our approach was to use the Army 
Knowledge Online (AKO) as a platform to demonstrate PROWL concepts. The second thrust, 
which represented a smaller effort, explored potential synergies between augmented reality and 
three social computing concepts, shared sensing, collaborative analysis, and coordinated action. 
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Data collected through these technologies, alone and in concert, might be used to augment data 
from a more standard catalog, such as the AKO used in Thrust 1. Our approach for this secondary 
effort was to develop a number of use cases to illustrate their potential use and impact, and to 
identify supporting technologies that could be used to amplify them. 
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4.0 Results and Discussion 
 

4.1  BL Languages 
 
One of the major products of the BL program is a family of languages used for communication 
between BL components, including agents such as e-students and electronic teachers, and 
components within the e-student, including learning algorithms. These languages are either 
dialects of or have their origins in BL IL, an object-oriented language first developed during the 
initial BL Seedling (executed by Cycorp before initiation of the Bootstrapped Learning 
program).  We begin by describing that language and its role in the program, and follow with 
separate discussions of its notable dialects and a summary of its evolution and contributions to 
the program. 

 
4.1.1 InterLingua (IL) 

4.1.1.1 Overview 
The BL IL is the most general language used in the BL program, and is used either directly or 
indirectly by every electronic agent (i.e., teacher, student, world (simulator)) in the BL 
framework. For example, interactions between agents are represented using the ITL, a dialect of 
IL, and curricula are codified as IL objects and contain sub-routines that are either IL programs 
or call outs to IL programs when building Interaction Language messages. 

 

Apart from serving as a basis for these specialized dialects, to be discussed in more detail below, 
IL played the key role of serving as the language for representing the knowledge that the 
instructor intends to impart to the student. Conceptually, the instructor wishes to impart a 
capability to the student. The teacher, being an electronic agent acting on behalf of the 
instructor, has a model of this capability in the form of a procedure. The student’s goal is to 
construct a functionally equivalent, and executable, model of this capability. In the BL program, 
both the teacher’s model (often referred to, slightly imprecisely, as “injected knowledge,” since, 
if necessary, it can be loaded into the student directly) and the student’s learned model (often 
referred to as the “results of learning,” or ROL) are codified in IL. 

 

The requirement for the student to codify its ROL in IL was a major driver in IL design. First, IL 
supports key programming idioms, such as if/then/else and while loops, as well as declarative 
(logic-like) structures. IL classes are first-class objects in the language, to support the possibility 
of allowing a student to “reason about” the class hierarchy so that, e.g., it might sensibly estimate 
what IL “methods”1 are most appropriate to try when solving a certain class of problem. Finally, 
IL classes can be associated with execution environments declaratively, so that the student can 
build its own class and decide, autonomously, how to implement semantics for that class. 

 

4.1.1.2 Summary of Language Features 
IL is a class-based, object-oriented language. Accordingly, each formula of the language can be 
thought of as a typed object, called an IL object. Each IL object falls exclusively into one of 
three categories: it is an atom, such as a string, integer, float, or symbol; a composite: an object 

 
 
 
 

 
1 In IL, the notion of a method most closely correlates to a family of executable IL classes. 
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formed by applying an implicit constructor for a given class to zero or more IL objects; or a list 
of IL atoms and/or composites. 

 

The reference implementation of IL provided by the curriculum team comes with an IL parser 
and process virtual machine (VM), the IL VM, that enforces typing, resolves symbols to objects, 
and “directs” executable code to the proper interpreter. 

 

The General Structure of IL Objects 
 

A composite IL object can be thought of as a recursive structure, in the sense that each such 
object is parameterized, and the values for those various parameters are themselves IL objects. 
These parameters are analogous to Java class data members or to fields in a C structure. Here is 
an example composite IL object from Blocks World, an instantiation of the class Block: 

Block(name=“block1”,support=Block(name=“block2”,color=“red”))2
 

 
This object contains two IL objects: an atom (the string “block1”) and one composite object, 
Block(name=“block2”,color=”red”). The second composite, in turn, contains two atoms: 
“block2” and “red”. The symbols name, support, and color are parameters to which 
“block1”, Block(name=“block2”,color=“red”), and “red”, and have been assigned 
respectively as values. 

 

Assignment of a value to a parameter in a structure instantiation is tantamount to ascribing a 
property to an object For example, our instantiation of Block carries with it facts about the 
instance: It can be referred to using the symbol block1, and it is supported by the block block2, 
which is red. 

 

An intended benefit of the recursive structure of IL objects is the ability to have a uniform 
interface to accessing IL objects through the fields of “subsuming” IL objects. This accessor is 
implemented in IL via a GetField command that takes an IL object and a symbol (a field name) 
and returns the value of that field. For convenience, a “.” operator allows for arbitrarily deep 
references through IL object fields. For example, 

 

block1.support 
 
is a reference to block2, while 

 
block1.support.color 

 
is a reference to “red”. 

 

IL Classes 
 

A notable feature of IL is that IL classes can be declared piecemeal. The Is operator allows one 
to define a new class and place it in the class hierarchy, or to take an existing class and place it 
underneath multiple classes, so as to effect multiple-inheritance. For example, given the 
existence of the class Animal, one can define a new class Person as a sub-class: 

 
 
 
 

2 This example is designed to illustrate the way in which IL objects can structurally subsume one another. 
The example does not cover all possible forms of IL objects or valid ways of writing IL; see “IL Parsing 
and Printing” [7] for a full specification. 
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Is(Person,Animal); 
 
One can then define Person as a sub-class of Intelligent: 

 

Is(Person,Intelligent); 
 
This enables the Person class to inherit parameters from both classes. 

 

Parameters can also be explicitly defined for a new class, again in piecemeal fashion, via the 
operator arg. For example, 

 

Arg(Person,almaMater,School); 
 
defines the almaMater parameter for Person, and constrains its values to objects that instantiate 
the School class. This means that any valid instantiation of Person can be assigned an 
almaMater of the appropriate type, in addition to any parameter defined for its super-classes. 
For example, assuming that Animal has a parameter, ageInYears, that takes an integer, one can 
instantiate Person with an IL object: 

 

Person(name=Bob,ageInYears=32,almaMater=UniversityOfMinnesota) 
 

IL Evaluation 
 

For some IL classes—specifically, those that represent executable commands or functions—it is 
desirable to assign an interpreter that can be used to execute instances. Again, this assignment can 
be done declaratively in IL, using the defCode operator.  defCode requires three arguments: a 
class name (the class whose instances will be evaluated by the interpreter), a pointer to an engine, 
and a “chunk” of code. For example, 

 

defCode Plus Native NativeBody(code=Arithmetic); 
 
When an actual argument list, e.g., Plus(2,3) is interpreted, the engine behind the Native 
engine pointer looks up the relevant code in the code chunk pointed to by Arithmetic. That 
engine runs its code on the values 1 and 2 and updates the evaluation context with a new Number 
construct with its result. Thus, for example, Plus(2,3) evaluates to an invocation of addition 
(i.e., Plus instantiated with arguments 2 and 3): 

 

Plus(args=2,3,name=“plus-344”,returnValue=5). 
 
The astute reader will observe that in this example, the result of executing Plus here is an 
updated Plus object that carries with it its returnValue, and not the value itself (5). This 
perhaps unusual feature of the language was intended to support learning, by minimizing 
information loss (specifically, by generating a record the student can inspect of what functions 
were called and which operations were executed. This supports student “experimentation” with 
code during ‘by Feedback’-style instruction. Over the course of the BL program, however, this 
level of information preservation was deemed to be less useful to the student than had been 
anticipated, and a cause for slowness within the BL framework. As a result, this feature was 
eliminated. 

 

In the example defCode above, we call out to a pre-defined chunk of code that is supported by 
the Native engine. However, IL was designed to allow its users, including (especially) the e- 
student, to write arbitrary code. For example, the code for the CalcHypot class could be 
represented in the following defCode declaration: 
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defCode CalcHypot Function 
FunctionBody(expression=Sqrt(Plus(Expt(a,2),Expt(b,2)))); 

 
In the typical case, the e-student was expected to learn defCode declarations that were 
compositional in this way, building upon previously learned defCode declarations and adjustable 
by various learning algorithms within the student. 

 

IL Packages 
 

All IL objects, including class and code declarations, are relativized to a specialized object 
known as a Package. Package objects can be thought of as “bundles” of declarations organized 
into a hierarchy. A package “below” another package inherits the contents (the objects) of the 
“higher” package. This sort of inheritance can be illustrated by thinking about how packages 
affect the ability of an IL VM to dereference the names of IL objects: if Package-1 contains the 
object Object(name=obj1), and if Package-2 contains the object Object(name=obj2), and 
Package-3 inherits from Package-1 and Package-2, then the following claims about the names 
‘obj1’ and ‘obj2’ can be made: 

 

  In Package-3, the names ‘obj1’ and ‘obj2’ will be recognized as names of objects, and 
parsed to Object(name=obj1) and Object(name=obj2), respectively. 

  In Package-1, the name ‘obj1’ will be recognized and parsed to Object(name=obj1). 
The name ‘obj2’ will not parse to an object, and will be understood as a bare symbol, 
obj2. 

  In Package-2, the name ‘obj2’ will be recognized and parsed to Object(name=obj2). 
The name ‘obj1’ will not parse to an object, and will be understood as a bare symbol, 
obj1. 

 

The purpose behind the package mechanism was to enable the e-student to formulate competing 
hypotheses about the concept it is learning. That is, as a result of instruction, the student might 
have two possible interpretations of the semantics of some concept (i.e., two competing defCode 
declarations), and the package mechanism allows it to maintain both without contradiction. A 
secondary benefit of packages was to support the implementation of injected knowledge – that is, 
if the student needed to be “handed” the teacher’s interpretation of the target concept to be taught 
(a strategy designed to allow the student to be imperfect, and “fail” an intermediate test yet still 
“carry on” without necessarily failing the entire curriculum). This could be accomplished simply 
by given the student access to the teacher’s package for that knowledge.3 

 

As noted above, in instruction as viewed in BL one can think of there being a target capability 
(or “concept” to use BL vernacular) that the instructor intends to impart to the student. The 
teacher has its own internal model, or codification of this capability represented as a series of Is, 
Arg, and defCode declarations. Rather than just “handing over” this internal model to the 
student, the programmatic goal of BL was to produce a student that could build a functionally 
equivalent model through instruction. This requires a language for communicating between the 

 
 
 
 

3 Originally, this was accomplished by simply adding a package inheritance declaration, making this an 
elegant solution to the Injected Knowledge problem. However, as the program moved towards a fully 
distributed system (with the teacher and student running on different VMs), the sharing of knowledge was 
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accomplished by serializing the package. student and teacher, and for communicating facts about the 
shared, simulated environment and changes to that environment. It is to this language, the 
InteracTion Language, which we now turn. 

 
4.1.2 InteracTion Language (ITL) 
ITL is a dialect of IL used for inter-agent communication. For details on ITL the reader is directed to the 
BAE Systems Technical Report “Bootstrapped Learning Interaction Language” [5], the canonical 
documentation source for ITL. Here we provide an overview. 

 
Though the ITL language contains many constructs – many of which are specific to Natural 
Instruction Methods (Section 4.2) – at the most general level of description, the language 
consists of four main classes. These classes serve to bundle up information about the simulated 
environment or to express “spoken” forms of communication between agents. These classes are 
all extensions of a top level ITL class, Message: 

 

  Perception messages contain information about what an agent can currently discern 
about objects in the simulated world, such as their relative location. 

  Action messages reflect “atomic” activities, such as which simulator commands have 
been executed, that can be presumed to be detectible by an electronic agent. (These are 
distinguished from full-blown tasks that are implemented, in part, by the execution of 
simulator commands – such tasks are not directly perceivable, and so are not “given” in 
Action messages.) To disambiguate the doer of an Action, the class is actually sub- 
classed into specialized TeacherAction and StudentAction classes, specific to the 
teacher and the student, respectively. 

  Utter messages allow agents to express truth-evaluable claims about the world. 
  Imperative messages allow agents to give commands to one another. 

 

These classes all inherit source and addressee parameters from Message, which allows the BL 
framework to direct messages to their appropriate recipient. Together, these message-types can 
generate a useful model of teacher-student-world interactions. Consider a brief example of a 
fictitious interaction sequence from Blocks World: 

 

The Blocks World simulation starts and all agents receive a Perception of the initial world 
state, a table with a block, a, on the table, and a claw: 

 

Perception( 
perceptsGained= 
[Table(name=table),Block(name=a,support=table),Claw(name=claw,holds=NIL)], 
perceptsLost=NIL) 

 
The teacher then begins to execute a simple “lift block” routine. This is accomplished by 
sending a request, in the form of an Imperative message, to the simulator. This message, 
addressed only the simulator proxy agent called “theWorld,” is not visible to the student. 

 

Imperative( 
addressee=theWorld, 
source=theTeacher, 
request=LiftBlock(block=a)) 
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In response, the simulator executes the first of the two low-level actions of the routine, which are 
reported as Action messages credited to the teacher: 

 

TeacherAction( 
action=Grasp(grasped=a)) 

 
As a result, the simulated “world state” changes: a is now in the clutches of the claw: 

 

Perception( 
perceptsGained=[Claw(holds=a)], 
perceptsLost=[Claw(holds=NIL)]) 

 
The teacher then articulates this fact to the student (who, we’ll suppose, is being taught what “in” 
means in this context, and for which this state is an example from which the student can learn): 

 

Utter( 
addressee=the-student, 
source=theTeacher, 
utterance=In(a,claw)) 

 
The simulator next executes the second of the two low-level actions that make up the “lift block” 
routine, reporting this back to the timeline as a teacher action: 

 

TeacherAction( 
action=Raise()) 

 
The world state changes, and again the teacher comments on this change: 

 

Perception( 
perceptsLost= 
[Block(name=a,support=table)], 

perceptsGained= 
[Block(name=a,support=NIL)]) 

 
Utter( 
addressee=the-student, 
source=theTeacher, 
utterance=Raised(raised=a)) 

 
The relative temporal ordering of messages is modeled by their order on a Timeline object that 
is generated for each instructional sequence. Additionally, messages can be assigned a 
timestamp to generate more concrete temporal information. 

 

4.1.3 Curriculum Language4 (CL) 
CL is used to codify instructional materials for consumption by the student in the BLADE 
framework. At the most general level, a codified curriculum consists in the following set of 
objects: 

 
 
 
 
 

4 For detailed information about CL, the reader is directed to “Bootstrapped Learning Curriculum 
Language” [8]. 
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  Injected Knowledge, which consists of the teacher’s IL formalization of the capability 
(or “concept”) to be taught. 

  Generators, which are executable programs that generate sequences of Message objects 
(see the section on ITL, above) for consumption by the simulator and student. Generators 
come in two varieties, Static Segment Generators, which play a fixed sequence of 
messages, and Message Generators, which may produce different message-sequences in 
response to changes in/reactions from the world state/student. 

  Lessons, which invoke generators to produce a sequence of messages. 
  Tests, which pose problems (see the discussion of Imperative messages above) for the 

student to solve, for the purpose of evaluating whether the student has acquired a 
functionally equivalent representation of the target capability 

  The Curriculum itself – an object that associates lessons and tests with their target 
concepts (the Injected Knowledge) and orders those concepts in a hierarchy, based on 
which concepts are prerequisites for others. Within the program, a metaphor of a ladder 
was used to describe this hierarchy. 

 

Figure 2 reproduces a diagram from the “BL Curriculum Language” documentation that draws 
upon the ladder metaphor to illustrate the general structure of BL curricula. IL programs called 
segment generators produce sequences of messages from the teacher that form the basis of 
instruction. A lesson is a structure that contains one or more segment generators; each lesson 
teaches a concept (or rung), which may have several lessons. A curriculum is a sequence of 
rungs ordered by a prerequisite relation (a higher rung requires, or makes use of, knowledge 
taught at a lower rung). 
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Figure 2: Structure of a BLCurriculum 
 

In the early stages of the BL program, the Curriculum Language was, like the Interaction 
Language, an IL dialect; segment generators, for example, were executable IL objects that were 
executed in an IL virtual machine within the BL framework. The decision to implement the CL 
in IL had the drawback of requiring IL expertise, so that only a handful of developers could 
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actually contribute to the process of curriculum formalization. At the same time, this decision had 
the benefit of turning curriculum authoring into an intensive IL proving ground; much of the 
work that went into stabilizing and maturing IL was prompted by early curriculum development 
efforts, early enough that most IL bugs were discovered internally by the curriculum team, and 
not “too late” by the Student Team developers. 

 

As the language matured and IL stabilized, this benefit no longer outweighed the bar to entry in 
curriculum development that IL expertise represented. Thus, in Phases 2 and 3, alternative 
methods of implementing generators were developed, first in Java, later in Ruby. Both of these 
alternatives lowered the qualifications bar and potentially opened up curriculum authoring to 
people outside the immediate BL community. 

 
4.1.4 Language Evolution and Implementation 
Prior to the start of the BL program, a reference implementation of IL had been developed, to 
allow the research program to hit the ground running. When the BL program began, this 
implementation, the IL Virtual Machine, was published as part of the BL framework and made 
available to all program participants. However, the Student Team developed its own 
implementation of the language, to support aspects of the student design, which required that the 
various internal learning components communicate with one another in IL. After much 
negotiation, the Student Team developed IL 2, a second implementation that met the Student 
Team’s requirements while simultaneously allowing the curriculum authors, who had a high level 
of facility with the original IL, to continue to write curricula in accordance with original IL 
assumptions. 

 

Though IL did not undergo any other major changes after this, it was extended during Phase 3 to 
support reactivity. Reactivity began to emerge as an implicit requirement for some of the 
curricula under development in Phase 2, such as ISS and the Hidden Domain, where the metaphor 
of a “monitoring agent” was used to describe the desired post-learning behavior of the student. 
However, IL had not been set up to handle reactivity – the instructional model was that the 
student would only do what it had been explicitly told to do via an Imperative message – nor was 
its single-threaded implementation designed to handle complex issues such as the concurrency 
that reactivity presupposed. 

 

By the end of Phase 3, the language had been extended to simulate a restricted form of reactivity, 
via an Anytime construct. An object of the form Anytime(condition=<TRIGGER>, 
action=<RESPONSE>) when registered in the VM would enable a sub-routine whereby the 
student would check whether the predicate <TRIGGER> evaluated to true each time the world state 
updated, and when it did evaluate to true, it would cause the program <RESPONSE> to execute. 
To support this kind of reactivity, the BL framework was also extended to provide a world state 
server that could reliably maintain a directory of all percepts in the simulated environment at a 
given time. 

 

This work on the world state server allowed the curriculum to also support historical state 
references when developing Phase 3 curricula. That is, while in the first two phases, the instructor 
could only refer to objects in the “current” world state, the ability to access a world state server 
allowed the instructor to make, and for the student to understand, references to changes in state, to 
facts that had been true in the past but no longer were. This extension played a role in ensuring 
that Phase 3 training and evaluation curricula were richer in the space of problems to be solved. 
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Other changes to IL have been alluded to above, but are worth mentioning here: The 
preservation of all IL objects, including invocation records of executed programs, was eliminated 
in favor of a more traditional approach of maintaining only the return values. Additionally, 
explicit quoting support was also introduced as a valuable way to delay the execution of IL 
objects, so that the student could inspect an object (e.g., a teacher’s utterance about the world 
state) without evaluating it (and winding up with ‘true’ instead of the utterance itself). 

 
4.1.5 Uses Outside of the BL Framework 
As noted above, the Student Team implemented its own version of IL in Java during Phase I for 
use as a communication language among learning components. Internally, this involved 
extending the IL language to support a First Order Logic (FOL) for describing the structure of IL 
objects. For example, given an object of the form Tank(name=tank712,moving=true), the 
student would generate an additional object describing this form, using IL predicates to state, for 
example, that the value of the moving parameter for tank712 is true. This use of IL played a 
large role in the byExample and byFeedback learning algorithms within the MABLE student; 
these algorithms would produce defCode declarations that targeted a specific prolog engine, and 
would compose a code chunk that drew upon this FOL representation. 

 

4.2  Natural Instruction Methods (NIMs) 
 
Natural Instruction Methods (NIMs) are protocols for interaction between a human or electronic 
instructor and an e-student. Within the BL program, these protocols were intended to serve two 
functions: First, they defined the “legal” space and ordering of messages that comprise the 
instructional input to the e-student over the course of a lesson. In this capacity, NIMs provide a 
rigid infrastructure that insulates learning algorithms from exposure to “unfair” or “trick” 
interactions, and thus facilitates establishment of a stable development environment for the 
learning team and supports a fair evaluation of the learning team’s algorithms. Secondarily, 
NIMs have served as models of human-to-human pedagogical interaction. In this capacity, they 
were intended to help “drive the science” of BL forward, by introducing challenges that human 
students can surmount, but the state of the art in machine learning could not. Though not in 
direct conflict, the two roles are in tension, as the more constrained and “stable” the interactive 
protocols, the less faithful to natural human interaction the model is. This tension was intended 
to be alleviated by modifying NIMs over time, so that once learning algorithms had been proved 
robust against a set of initial, admittedly artificial protocols, those protocols could be changed in 
piecemeal fashion to accommodate the sorts of problematic features – such as ambiguous or 
vague use of language and the omission of “obvious” pieces of information – that are ubiquitous 
in human instruction. This transitional process was termed “relaxation,” and was central to 
supporting the program’s goal of developing learning algorithms that would be of enduring value 
to the instructable computing field. 

 

In this section, we describe the kinds of NIMs that were developed and deployed over the course 
of the BL program. We discuss relative successes and failures in the transitional “relaxation” 
process, and assess the utility of the corresponding NIMs to the program and to the instructable 
computing field. Additional documentation can be found in BAE Systems Technical Report 
2766 [9]. 
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4.2.1 NIM Types 
As will be discussed, some of the initial assumptions about the nature of NIMs (that they weren’t 
specific to learning algorithms) did not survive the early phases of the BL program, somewhat 
reducing the overall utility of NIMs as tools for promoting learning algorithm development. 

 

4.2.1.1 Identification of Methods and Specific Knowledge-Types 
As formalized protocols, NIMs are best thought of as specifications that fall most generally into 
three general categories corresponding to methods of teaching, but within each category, 
different NIMs specify variations in the protocol based on the type of knowledge being taught. 
The three general NIM categories recognized by the BL program are the following: 

 

  Teaching by examples or demonstration (“by Example” for short) 
  Teaching by telling or describing (“by Telling”) 
  Teaching by feedback (“by Feedback”) 

 

As the program developed, it was recognized that these general NIM categories apply to several 
different types of knowledge: 

 

  Procedural, or “how to” knowledge, of which two subclasses were eventually recognized: 
o Procedures that result in perceptual changes in world state (e.g., making a stack of 

blocks), and 
o Procedures that calculate values for (non-Boolean) functions. 

  Knowledge of conditions, of which three relevant types were recognized: 
o Truth-conditions (i.e., the semantics of a predicate were taught) 
o Execution conditions (i.e., predicate(s) to check whether an if/then/else construct 

or while loop should be entered) 
o Post-conditions (i.e., how the world changes as a result of executing some 

procedure) 
  Syntactic knowledge, or knowledge of the definitions that define new classes, where in 

the class hierarchy those classes fall, and the parameter/value-typing signatures that 
define the well-formedness conditions for their instances 

 

The identification of knowledge types was driven primarily by three factors: 
 

1)  Momentum from the BL seedling: Many of the kinds of problems taught in Blocks-World 
fell into obvious, natural categories (e.g., predicates, procedures, post-conditions, syntax), 
and these were more or less accepted as “good knowledge-types” by program participants 

2)  The initial design of curricula by domain providers: The curriculum team had domain 
providers who supplied simulators, domain expertise, and informal curriculum designs 
that were to be codified by other members of the team. As these informal designs 
developed, certain kinds of knowledge implicit in the designs became evident. 

3)  Design decisions by the learning team: The learning team developed an e-student 
architecture that assumed the existence of a central control module whose job was to 
identify – at the level of individual lessons – which learning algorithm(s) should be 
applied. Since, at least initially, each lesson taught one concept (knowledge of some type) 
and used one general method, the assumption that individual lessons could be handled 
entirely by a single learning algorithm meant that learning algorithms were to be defined 
by general method and knowledge-type – i.e., by NIM. This gave learning algorithm 
developers – machine learning experts with an interest in specific learning 
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problems – a genuine stake in what kinds of things were being taught and how, and this 
influenced the kinds of knowledge that would be recognized as falling under a formalized 
NIM protocol. Thus, for example when “procedural knowledge” was to be taught by 
Example, it was important that a distinction be drawn between “procedures with side 
effects” and “procedures that calculate values for functions,” because two different 
learning-algorithm writers were interested in, and responsible for, these two types of 
procedures. This distinction did not need to be explicitly made when teaching by Telling, 
however, as a single algorithm-writer was responsible for learning procedures via 
Telling. 

 

4.2.1.2 The Development and Refinement of NIM Contracts 
Early on in the program, each type of knowledge was associated with 3 separate NIM protocol 
formalizations, one for each general method (the sole exception to this was Syntactic knowledge, 
which was recognized as only sensibly taught by Telling). These formalizations underwent a 
process of generalization, combining protocols into a unified formalization where possible. By 
December 2008 (the middle of Phase 1), this process of generalization was complete, and the 
specific knowledge-types were officially combined with the general method-types to define eight 
sets of NIM protocols, known as NIM Contracts: 

 

o TellingOfProcedure – both types of procedural knowledge, taught by Telling 
o ExampleOfProcedure – both types of procedural knowledge, taught by Demonstration 
o TellingOfConditions – all three types of condition, taught by Telling 
o TruthConditionsByExample – truth conditions, via positive and negative cases 
o ExecutionConditionsByExample – if/then/else, while triggers, by positive/negative cases 
o EffectsByExample – post-conditions, by positive/negative cases 
o byFeedback – all knowledge-types (except Syntax), taught by testing and grading 
o TellingOfSyntax – telling of classes and argument-signatures 

The NIM contracts were delivered to the learning team, who delivered them to the appropriate 
algorithm-writers. In addition to the contracts, a “universal” protocol document that defined 
commonalities – the “NIM Common Terms” document – was developed and distributed. The 
NIM Common Terms document dealt with protocols that were shared among NIM contracts. For 
example, every NIM contract specified that lessons begin with “control utterances” – a pair of 
statements from the instructor that identified, first, the type of concept being taught, and then 
the general method, so that the e-student would know what NIM protocol applied. For example, 
to indicate that the TruthConditionsByExample NIM contract was guiding the current lesson to 
teach a predicate named “Foo,” the instructor would produce the following pair of control 
utterances: 

 

LessonTeaches(WhenTrue(Foo)) 
Method(byExample) 

 

In contrast, if the byFeedback contract was guiding the current lesson, which taught Bar, a 
procedure (with side effects), the instructor would produce this pair of control utterances: 

 

LessonTeaches(HowTo(Do(Bar))) 
Method(byFeedback) 

 

The NIM Common Terms protocol also dealt with other commonalities, such as the use of so- 
called “relevance” vocabulary across the byFeedback and the various *byExample NIMs, the 
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definitions of logical vocabulary (And, Or, etc.), the use of language to specify desired end-states, 
etc. 

 

4.2.1.3 Contributions from the Learning Team 
Early on, the learning team did not actively attempt to contribute to the formation of NIM 
contracts, opting for the most part to study the blocks world curriculum and implement 
algorithms that could target those lessons as use cases. Indeed, early on, some members of the 
learning team questioned the value of NIM contracts altogether, suggesting that progress would 
be obtained more rapidly if the development of training curricula were accelerated relative to 
development of formalized protocols. But as diversity domain curricula began to emerge, and 
the blocks-world use cases became insufficient to predict the space of interactions included in the 
new curricula, the need to attend to and help shape the details of the NIM contracts became clearer 
to the learning team, which took two courses of action in response. One was to produce a 
document on “learnability,” in which each learning algorithm writer enumerated the general 
features required by any lesson teaching a concept falling within that algorithm’s bailiwick. The 
second was to engage with the curriculum team directly, identifying particular problematic 
examples from the diversity domain and extrapolating from those examples what sorts of 
changes needed to be made, either to the NIM protocol or to the learning algorithm. Working 
with the learning algorithm writers individually, several changes in NIM contracts were 
introduced, some in the area of additional vocabulary to facilitate expressiveness and reduce 
ambiguity, others in the area of restrictions that would increase clarity. One of the most notable 
improvements came from discussions that began during the learning team-hosted “hackathons,” 
where extensions to the then-generic “relevance” language were developed. (Up to that point, 
there had been a single predicate, Relevant(X) which meant that the object X was somehow 
relevant to what was being taught, with no indication about how or why the object was relevant). 
Other contributions were more restrictive, such as eliminating multiple ways to say the same 
thing, and eliminating ambiguity. Most of these restrictions attained the status of relaxation 
trajectories, or planned “loosenings” of the now stricter protocols, that could be used later in the 
program. 

 

4.2.1.4 Syntax and Noticing 
Of the eight formal NIM contracts used in Phase I of the BL program, seven continued to be used 
throughout the remainder of the program. No additional contracts were added. The 
TellingOfSyntax NIM contract was eliminated at the end of Phase I, and replaced by the learning 
strategy of Noticing that new terms had been introduced in the course of a lesson, and deriving 
the IL definitions by observing how the terms were used. This added a new dimension of 
realism to the diversity domain curricula, as it allowed an entirely new concept to be introduced 
and its semantics taught in the course of a lesson. 

 
4.2.2 Assessing the NIMs 

4.2.2.1 Phase I & II NIM Assessment 
It is fair to say that the NIM contracts of Phase I – and thus the diversity domain and Phase II 
Hidden Domain lessons that implemented them – successfully filled their role as formalized 
protocols to guide interactions and ensure that concepts were learnable by the e-student. The e- 
student passed the pre-Hidden Domain acceptance test during Phase II on the diversity domain 
lessons, each of which instantiated a NIM contract, and the breadth of which exercised the 
breadth of “instructional space” allotted by the relevant NIM fairly well. Additionally, the e- 
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student passed the Phase II Hidden Domain curriculum, which established that the NIM 
protocols and the learning algorithms were robust when presented with a novel domain. 

 

At the same time, however, the initial versions of the NIM protocols were highly restrictive by 
design, and so were fairly artificial, limiting their ability to serve as accurate models of human 
instruction. Somewhat unfortunately, the NIM contracts – influenced by largely restrictive 
contributions from the learning team that came relatively late in the first phase of the program 
(only after diversity domain lessons became available) – arguably took a step backward from 
their role as models of human instruction, becoming more artificial than what had been initially 
proposed. Areas of artificiality thus introduced included: 

 

  An increased level of “relevance” annotation of examples (providing more information 
than humans would plausibly provide) that caused most “by Example” and “by 
Feedback” learning to approximate the “by Telling” interaction protocol. 

  A need to explicitly introduce, as arguments to a predicate, any domain object used in 
calculating its truth value. (e.g., instead of defining “siblings(x,y)” as “given x,y, and z, 
siblings(x,y) holds if parent(x,z) and parent(y,z)”, the restriction was introduced that 
siblings be defined as ternary, with an argument place for the parent.) 

  The elimination of disjunctive truth conditions as possible learning targets. 
  A reliance on explicit statements of “what to do next” while demonstrating a procedure, 

e.g., that a procedure contains a loop or an if/then/else construct. 
 

4.2.2.2 NIM Relaxation and Phase III 
After Phase II, the curriculum team took measures to introduce a space of learning challenges and 
relaxation trajectories to reduce NIM artificiality and move towards more realistic modeling of 
human instruction. In March 2010, the curriculum team distributed a document to the learning 
team defining a fairly rich space of such challenges and relaxations that would improve 
instruction naturalness. The learning team was able to implement some of these new NIM types; 
fortunately, some of the most troubling artificialities “made the list,” and much of Phase III was 
spent implementing these relaxations in the diversity and Hidden Domains.  For example, all of 
the bulleted items, listed above as matters of concern with respect to artificiality, except for 
“disjunctive truth conditions” were implemented in Phase III and used by the algorithm writers 
to allow their learning algorithms to function with less artificial NIM protocols. 

 

By the end of the Phase, the e-student was able to reach performance on the “relaxed” diversity 
domains comparable to that in Phase II, and it succeeded in passing the “relaxed” Hidden Domain.  
Though some artificialities remain, the fact that the student was able to learn with several artificial 
“crutches” removed, and with only a short time for additional preparation by the learning team is 
highly promising. 
 
4.2.3 Conclusions 
Natural Instruction Methods were an integral part of the BL program, serving both as protocols to 
ensure compliance of instructional materials with the expectations of the learning team and with 
the requirements of fair testing, and as models of human modes of pedagogical interaction. While 
highly successful in this first role, the NIM protocols developed for the BL program were only 
able to begin to live up to their second – arguably more important – role in the final phase of the 
program. Nevertheless, the fact that the e-student was able to pass the final evaluation, a “hidden 
domain” curriculum that embodied several NIM relaxations, including the removal of 
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excessive “what to do next” hints during demonstrations and the use of vague or ambiguous 
“relevance” statements, as well as multiple learning challenges, indicates that the basic approach 
of specifying instructional protocols in the form of NIMs has value, and can be built upon in 
future work on instructable computing. 

 

4.3  BL Automatic Teacher and Framework 
 
The e-student is taught and tested via a machine readable curriculum definition (described in a 
previous section). Curricula have been encoded for each of the testing domains (described in the 
following sections). The curriculum is transmitted via the automated teacher to the student in a 
manner that obeys the natural instruction methods. While a human teacher might also provide 
this curriculum-based instruction, in this project, the automated teacher has the role as an 
electronic proxy for the human instructor who writes the curriculum. While the ultimate goal of 
the BL program is to allow humans to instruct the automated learners, the automated teacher and 
curriculum combination is vital to executing repeatable and automated tests of the e-student. 
These testing cycles are crucial to both the development of the learning capabilities (not 
surprisingly the student algorithms do not learn everything required upon first release) and to the 
assessment of the learners’ accomplishments. 

 

The teacher operates using the services of the BL framework. The BL Messaging Framework is 
a Java-based platform for conducting machine learning experiments. The heart of the framework 
is the Channel Server, an object which acts as a message bus and coordinates the initialization of 
the system. The Channel Server allows for the passing of Channel Messages on a variety of 
named Channels. Channels record and deliver Channel Messages to various subscribers. 
Channel Listeners are objects that subscribe to various named channels in order to receive 
Channel Messages. Agents are objects that, after registering with the Channel Server, are allowed 
to post as well as receive Channel Messages. In order to abstract Agents from implementation 
details of the underlying message bus, Agents use a Channel Message Factory to create Channel 
Messages for posting to the framework. 

 

The framework has been designed so that components may be initialized and started 
independently from other components in the system. The first component to begin operation 
must be the Channel Server. The Channel Server starts a Framework Agent, which represents 
the framework when passing messages on named channels. The Framework Agent posts 
framework properties, announces agent registrations, and transmits curriculum files to agents. 
After the Channel Server is running, Agents and Listeners may connect to the framework at any 
time. Channel Listeners connect to the system by subscribing to a named channel. Agents 
connect to the system by registering themselves. The Channel Server remains running regardless 
of Agent activity. On the event that the Channel Server should shut down, it will send a shutdown 
message to all agents in the system. 

 

A crucial aspect of the framework is the timeline. It can be thought of as the communication 
backbone for the BL framework and constituent components (i.e., Student, Teacher, and World). 
The timeline provides: 

 

1)  Agent ITL messaging: Agents must have an interface to post messages to other agents 
and to receive messages from other agents. 
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2)  Historical access to the ITL messaging sequence: Agents must have a way to access 
previous messages on their timeline (a sequential accessor, e.g., getNth would provide the 
required access). 

3)  Access to the changing world model: At any particular point on the timeline there is an 
associated percept state of the World. An agent should be able to retrieve the percepts 
state of the world as of a particular time (as denoted by a particular message number in 
the timeline). 

4)  A messaging/addressing/interoperability backbone: The messaging framework is the 
primary interoperability mechanism that joins all the agents together. The timeline 
implementation should be pluggable to support alternate interoperability mechanisms. 
(This not so much an API requirement as a design/implementation constraint.) 

5)  The timeline supports flexible addressing of messages to multiple agents. Initially we 
have 3 addressable agents: Student, Teacher, and World. In the long run we may need to 
address multiple teachers and multiple students. 

6)  Agent coordination backbone. The timeline will also host agent coordination messages 
such as StudentDone and TeacherDone. The current supported instructional protocol 
involves a handshaking between Teacher and Student. The current protocol assumes a 
turn taking interaction between the agents. This turn taking does not provide for one 
agent interrupting another. A future requirement is for the teacher to be able to 
“interrupt” the student and tell the student they are done (“pencils down” – so to speak). 
Supporting an interruptible agent messaging protocol implies a corresponding 
requirement on the agents, i.e., to be able to gracefully handle an interrupt and 
presumably to be able to produce partial results at the point of interruption. 

 

The framework provides programmatic coordination of the agents in the BL system. The 
framework provides: 

 

1)  A general mechanism for setting and communicating execution input parameters. There 
are mechanisms for setting general framework parameters and individual agent 
parameters. This parameter mechanism is generalized in the sense there is not a specific 
a priori set of parameters. There is a dynamic capability to register and lookup parameter 
names. 

 
Example parameters include: How many knowledge injections can the student take? How 
much clock time is the student allowed? (Note that multiple agents will need to be able to 
handle these parameters. For example, does the student have the property that it can return 
partial results after a fixed amount of time? If not, the clock time parameter will 
potentially result in the student not being able to produce any result in the allotted time.)  
As parameters are defined, the required processing of that parameter by each agent must be 
considered. 

2)  A general mechanism to capture agent component output data. The parameter mechanism 
serves as both input and output mechanism. Certain results of a learning session are 
returned in output parameters. This helps support programmatic invocation of learning 
sessions (a la UNIX pipes). 

3)  The APIs for running a set of agents through a curriculum. The framework provides a set 
of APIs for marshaling the required set of agents (Student, Teacher, and World) and 
running a curriculum through them. The base curriculum to be run may be customized or 
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modified dynamically. A mechanism of “Curriculum Deltas” provides this functionality. 

A curriculum delta is a specification that can be applied to an existing curriculum to 
dynamically define a derived curriculum. The delta may, e.g., override properties 
defined in the curriculum IL files. 

4)  The APIs for programmatically executing an individual lesson. An API is provided for 
running a single lesson (this might be achievable via a curriculum delta) to support the 
assumed common testing case of scripting a sequence of lesson invocations 
programmatically. The API for running a single lesson exposes hooks for the basic steps 
of running a lesson – including at a minimum before and after lesson run hooks 

 

The automated teacher makes use of the framework to interact with the e-student. Curriculum 
segment materials are combined by the electronic teacher to create a segment generator for the 
lesson. The electronic teacher uses these materials to create an initial state for the domain 
simulator, adds messages to the timeline for the instruction, observes the student’s additions to the 
timeline, provides feedback and evaluation when appropriate in the lesson, and answers student 
questions. Our baseline electronic teacher, a simple scripting language with rule support, 
interprets the curriculum to generate interactions with the e-student that are recorded on the 
timeline. For example, in a teaching-by-demonstration example, the teacher first adds 
scaffolding utterances and task information to the timeline. It then issues imperative utterances 
that when evaluated cause actions to be taken in the simulator which in turn cause a response 
consisting of percepts that are added to the timeline. During this interaction, the Teacher monitors 
the interpreter’s execution and inserts utterances at appropriate points as directed by the 
curriculum materials. Context-specific questions, teaching-by-feedback, and evaluation rules 
can be handled similarly. 
 

4.4  Diversity Domains (and Simulators) 
 
Diversity domain curricula, or “diversity domains” for short, are electronic curricula used as 
development environments for learning algorithm development. Each diversity domain requires 
interaction with a domain-specific simulator, and is comprised of rungs that are intended to 
challenge the e-student on a variety of learning problems, each salient for that domain. Domains 
are topically heterogeneous – a gate against over-fitting of learning algorithms against a small 
space of problems. The problems instantiated in the diversity domain curricula were determined 
by a multi-phase process, involving members of both the curriculum and learning teams. The 
ultimate determination of learning challenges was but one step in the overall domain development 
process: 

 

  Informal Design and Simulator Development. First, a domain provider produces an 
informal description of a domain, or topic (e.g., problems in UAV control), and proposes a 
number of specific concepts to teach in that domain. The domain provider also provides a 
simulator and an API for executing commands in that simulator. 

  Simulator Integration and Initial Formalization. Other members of the curriculum team 
were responsible for integrating the simulator into the BL framework, which involved 
defining a “percept model” for generating ITL perception messages suitable for 
consumption by the student and teacher, and for codifying the concepts informally 
specified by the domain provider. Curriculum formalization occurred within the 
formalization guidelines set forth in the NIM contracts, and was constrained by the 
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practical expressive limitations of the IL language. As domain providers, in general, were 
neither familiar with the finer-grained details of the NIM protocols, nor with the practical 
limitations of the Interlingua language, this meant that the codification process often 
involved some iteration between domain providers and curriculum implementers, so that 
the original intent behind the curriculum was not lost or skewed as a result of 
formalization. Because curricula were designed in a modular fashion (that is, concepts 
and lessons could be added or removed without negatively impacting the ability to execute 
a curriculum), curricula could be “rolled out” to the learning team in piecemeal fashion. 
That is, once a lesson from the formalized curriculum was able to pass unit (JUnit) tests 
that ensured both the syntactic correctness of the lesson and the correctness of the 
“injected knowledge” (the instructor’s formalized model of the concept, or target 
capability, being taught by a lesson), the lesson was made available to the learning team. 
This sort of “roll out” allowed for a third, final stage in the curriculum development 
process. 

  Iterative Refinement. A diversity domain curriculum was not “set in stone” until the 
learning team was able to do some initial experimentation, which often revealed a number 
of issues. Issues ranged from purely “curriculum-side” problems, such as code- level 
bugs that were not “catchable” by the injected student (for example, the teacher might 
label an example incorrectly) in JUnit testing; to inter-team interpretative issues about 
what the NIM protocols licensed or did not license; to “student-side” issues, such as 
limitations on what kinds of challenges were “fair” (regardless of what NIMs did or did 
not license, or the revelation that extra-NIM restrictions must be imposed for certain 
learning algorithms to gain traction). 

 

This process produced four diversity domain curricula, plus an ever-evolving Blocks World 
curriculum, that the learning team was able to use in experimentation and algorithm 
development. As algorithms matured, diversity domain curricula were modified to make 
existing learning challenges more difficult (the NIM “relaxation” process), or to add new 
learning challenges. In fact, one of the diversity domain curricula – the ISS2 curriculum of 
Phase 3 – was written entirely for the purpose of handling new learning challenges, something 
that its simulator was uniquely suited among diversity domain simulators to support. 

 

In what follows, we describe each of the diversity domains (and Blocks World), to give the reader 
a sense of the kinds of learning problems to which the e-student was exposed. A much more 
detailed description of each diversity domain curriculum appears in the documentation associated 
with each curriculum [10]; the reader is specifically directed to the curriculum design document, 
simulator design document, and phase-specific editions of the curriculum manual for each 
diversity domain curriculum. 

 
4.4.1 Blocks World 
The Blocks World “starter” curriculum continued to evolve with the BL program, and was used 
to introduce new problems during each program phase. As its name implies, the curriculum 
involved the ability to use a claw to manipulate a set of blocks (located on a table) to create 
designated block configurations, e.g., a stack. However, the Blocks World curriculum was central 
to the program during Phase 1, when a subset of its problems formed the basis of the Phase 1 
evaluation. The e-student had to learn three target concepts from Blocks World, using three 
different NIM protocols, so as to establish the feasibility of their approach to learning. 
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In Phase 2, Blocks World was updated to use a new simulator that supported differently-sized 
blocks as well as absolute (x,y) coordinate locations; the original simulator only supported 
relative locations, e.g., “on a block” or “on the table.” The new simulator allowed for a range of 
more complex procedures to be taught, such as making a doorway or a T-shaped block structure. 

 

Blocks World also proved useful in Phase 3, as it was extended to help the student learn how to 
handle new learning challenges. 

 
4.4.2 Unmanned Aerial Vehicle (UAV) 
The UAV domain was the first curriculum introduced into the BL program after Blocks World. 
The initial curriculum design and simulator were provided by Sarnoff, Inc. The domain focused 
on UAV control, and its concepts were separated into three Units: 

 

  Unit 1 taught concepts central to operating the UAV, such as checking fuel levels prior to 
takeoff, flying from one waypoint to another, raising and lowering the landing gear, etc. 

  Unit 2 taught concepts central to operating the UAV camera. 
  Unit 35 taught concepts central to recognizing (simple) scenarios on the ground, ranging 

from recognizing low-level features such as relative distance (e.g., “near”) to more abstract 
features such as the conditions under which truck movement might be considered 
suspicious. 

 

The difficulty of the concepts in the UAV domain ranged from straightforward (e.g., teaching a 
procedure as a linear sequence of steps) to highly difficult (e.g., ambiguous examples) and so 
helped focus the program on a “sweet spot” in Phase 2, in terms of what sorts of problems were 
reasonable for the e-student to handle. Some kinds of lessons – for example, those that explicitly 
taught syntax (class-hierarchy location, parameters, and type-constraints on parameters) – were 
eventually dropped as “too easy,” while others – for example, those that used examples to teach 
cause-effect relationships when multiple simulator actions could cause the same effect – were 
dropped as “too hard.” 

 

The UAV curriculum initial design and simulator were provided by Sarnoff, Inc. 
 
4.4.3 Armored Task Force (ATF) 
The ATF domain curriculum and simulator were provided by Teknowledge. The curriculum was 
initially designed to teach concepts about force movement. Because of the similarities between 
force movement and control in the UAV domain, the program manager requested a change in 
focus, and the ATF curriculum was redesigned to focus on planning. The over-arching task of 
the redesigned curriculum was to teach the student an algorithm for “grading” a planned traversal 
by a company over an area with several different terrain features, based on the time it would take 
for a company to follow the route segments that comprised the overall path. Factors affecting time 
included not only the length of the route segments, but the terrain quality for each segment, the 
capacity of the company to handle certain kinds of terrain (specifically, mine fields, which could 
be crossed if the company was equipped with a mine plow), and how frequently the company was 
required to change formation. As an additional learning challenge, the plans did not explicitly 
specify formations, so the curriculum also taught a procedure for filling in this information, which 
the student had to supply in order to grade a planned traversal correctly. 

 
5 What we call “Unit 3” here is actually referred to in the UAV Curriculum Manuals and Design Document as “Unit 
4” – the “original” Unit 3 was unimplemented, so that Unit 4 is the third of three implemented UAV units.
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The ATF curriculum units included: 
 

  Unit 1 taught the syntax for the SetVelocity function, a concept from the original ATF 
design that had been implemented prior to the redesign. 

  Unit 2 taught the CompanyHasMinePlow predicate. Like the SetVelocity function, this 
concept originated from the original design; however, this predicate was used later in the 
curriculum to help assess the time it would take to cross terrain that contained mines. 

  Unit 3 taught all of the concepts that emerged in the redesign – all of the predicates, 
functions, and procedures needed to grade a plan for company traversal. 

 
4.4.4 International Space Station (ISS) (Version I) 
The ISS domain and simulator were provided by the AI research division of Stottler Henke [11]. 
The general theme of this curriculum was diagnosis. The e-student was placed in a simulated 
environment where it would receive alerts, and the instructor would teach it the significance of 
those alerts, a method for generating hypotheses about what problems those alerts might signify, 
and a procedure for ranking the hypotheses in terms of what should be “explored” first. The 
central metaphor used in the curriculum was a “whiteboard” – an artifact both shared and 
independently modifiable by the teacher and the student – that was used to maintain an evolving 
model of the space of hypotheses as to what might be wrong with the space station. Diagnosis in 
this curriculum thus consisted of modifying the whiteboard in a way that allowed hypotheses to be 
expanded, and priorities set to make the expansion sensible. The difficulty level for learning this 
diagnostic procedure was deemed sufficiently high that the teaching of repair methods was 
deferred for later phases (see following section on ISS version II). In its formalized, deployed 
form, the curriculum consisted of eighteen concepts across two units: 

 

  Unit 1 taught the notion of an abnormality, and the various conditions under which a 
notification from the ISS system might indicate an abnormality. Here, too, the notion of 
a whiteboard was used, and the student was taught how to register abnormalities on the 
whiteboard. 

  Unit 26 taught the various functions and procedures needed to navigate and modify the 
diagnostic hypothesis space via the shared whiteboard. This involved teaching the 
student how to “reason backwards” from a hypothesized event that could explain an 
abnormality to the various types of events that could cause that event, as well as how to 
“look ahead” to possible longer-term effects (such as mission failure or loss of the space 
station) if the ultimate cause (revealed by the reasoning-backwards process) were to go 
unaddressed. 

 

This curriculum was highly ambitious from both an instructional and software engineering point 
of view. The hypothesis space, modeled via the whiteboard object, was capable of growing to a 
size that made updates to it non-trivial in terms of memory management in the IL virtual machine.  
Moreover, the procedures for analyzing the hypothesis space were difficult to describe in a 
“natural” fashion, as they required a precise understanding of the formal structure of the 

 
 

6 Again, there is a numbering issue with this curriculum. As originally designed, the ISS curriculum consisted of a 
large number of concepts to be taught in eight units. Due to the complexities involved and limitations with the ISS 
simulator, only two units were implemented. 
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whiteboard, its constituent hypotheses, and the relationships among hypotheses. As a result, 
learning algorithm writers had trouble understanding the general nature of the learning problem, 
making learning algorithm debugging hard. 

 

A major source of the complexity was that the ISS simulator was unable to support the 
whiteboard model, which ultimately had to be represented in InterLingua as a modifiable object 
that could be passed back and forth. A conscious decision for Phase 3 was to update the ISS 
domain with a new, more robust simulator, and to focus the domain away from the whiteboard 
metaphor, and towards a simpler model of diagnosis and repair. The result was version II of the 
ISS domain, which was developed as a completely distinct curriculum from ISS I. 

 
4.4.5 International Space Station (version II) (ISS-II) 
The ISS II domain and simulator were also provided by Stottler Henke Associates. The 
curriculum featured seventeen concepts across 3 Units: 

 

  Unit 1 taught concepts central to alert-monitoring, such as the notion that an indicator has 
changed status, or that a new, unacknowledged alert has appeared. 

  Unit 2 consisted to two independent rungs, developed prior to the finalization of the ISS 
II design, that taught the student to recognize that changes to an indicator status mean that 
a control flow valve needs to be adjusted, and a procedure for identifying which valve(s) 
needs to be adjusted. 

  Unit 3 taught diagnostic predicate/repair procedure pairs needed to respond effectively to 
the indicator status change events introduced in Unit 1. 

 

Version II of ISS was significant not only because it fulfilled the early promise of ISS I by 
combining diagnosis with repair, but also because it supported two Phase 3-specific learning 
challenges: reactivity (i.e., learning to react in response to stimuli from the simulated 
environment), and reasoning about change over time. Until Phase 3, the IL language was 
restricted in its ability to handle these kinds of challenges, and the introduction of the new ISS 
simulator provided the program with an opportunity to explore them. Indeed, the Phase 3 
Hidden Domain curriculum was designed so as to contain these challenges, and of the diversity 
domain simulators, only the ISS II simulator was in a position to support them. 

 

4.5  Hidden Domain (and Simulators) 
 
A common problem with learning research and technology is overfitting of learned results to 
training and test data. For this reason it was considered highly desirable to show that the 
learning capabilities claimed by the learning teams were demonstrable in at least one problem 
domain of which the teams themselves had no prior knowledge: the so-called hidden domain 
(henceforth, the HD) of BL evaluation. 

 

Whether or not a certain representational capability is exhibited by a finite convergent learning 
behavior is a function of the dispositional state to which the learning system converges as the 
result of training: which amounts to saying that the test of whether a system has learned to satisfy 
one condition O if another condition I holds is whether the system will produce O in any 
situation where I is satisfied. The practical problem of establishing this general result on the basis 
of a finite number of test cases faces the challenge that, for any finite test set, the logical 
possibility exists that the learner has in fact learned a condition other than I that happens to be 
common to all of the tests. One way of obtaining defensible assurance of generality is to provide 
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the learning system with test cases which the system designers could not have anticipated and 
where the input condition holds, the persistence of convergence under unanticipated conditions 
serving as a strong indicator that adaptation is not overfitted to the training domains. 
 
4.5.1 Development Process 
As was the case with the diversity domains, the hidden domain supported an electronic 
development environment for algorithm learning, and as with the diversity domains, this 
environment presupposed interaction with a domain-specific simulator governed by a curriculum 
specification comprised of concept-specific rungs. Multiple lessons distinguished by natural 
instruction method or NIM were targeted to each rung. The natural instruction methods used were 
identical in format to those employed by the diversity domains and were agreed on by a consensus 
process between learning and evaluation teams, resulting in formally specified NIM contracts.  
The domain choice, informal domain design, electronic domain simulator, and Application 
Program Interface (API) were produced by the domain provider (Stottler Henke Associates) in 
consultation with the curriculum provider (Cycorp). The curriculum, consisting of formally 
specified electronic lessons teaching a partial order of concept rungs, was designed and 
implemented by Cycorp personnel. 
 
4.5.2 Content and Curriculum 
The operational learning environment selected for the HD concerned misconfigurations and 
component failures in satellite ground station equipment [12, 13], with training scenarios 
originating with actual experiences with ground stations for scientific satellites provided by a 
Stottler Henke Associates subject matter expert, Dr. Manfred Bester. The original HD 
curriculum consisted of five units and 23 rungs. Unit 1 was comprised of two rungs: how to 
identify abnormal indicators for a satellite tracking pass, and how to list components showing 
abnormal indicators. Unit 2 concerned the classes of equipment malfunction which were 
sufficient conditions for a component showing abnormal indicators. There were six such classes, 
corresponding to six IL predicates, with a single predicate taught in each unit rung. Unit 3 
concerned repair procedures for each of the taught fault conditions: there were six such repairs 
(corresponding to the six failure modes of Unit 2), and six Unit 3 rungs, with one rung 
corresponding to each repair procedure. Unit 4 taught conditionalizations linking failure modes 
and repairs: i.e., that each failure mode was in turn a sufficient condition for carrying out the 
corresponding repair procedure. Finally, Unit 5 taught a global diagnostic regimen for monitoring 
for abnormalities and applying repair procedures as needed, that would serve in all of the Stottler 
Henke fault scenarios. It consisted of three rungs. First, a repair procedure was taught that 
sequentially tried fixes on uninitialized, misconfigured, and inappropriately offline components, 
followed by fixes of intrack error, elevation error, and azimuth error, if the component on which 
the fix was being attempted was the tracking antenna. Second a secondary repair procedure was 
taught that took a list of components as input and, for each component element in the list, found 
the immediate predecessor in the tracking station dependency graph 
and executed the previously taught Unit 5, rung 1 repair procedure on that predecessor. Finally, 
a comprehensive diagnose-and-repair script was taught, that began with an assemblage of a list 
of all abnormal components, followed by an execution of the basic repair procedure on every 
element of the list, followed by regeneration of the list of abnormal components, followed by 
execution of the secondary repair procedure on the elements of the secondary list. 



30 
Approved for public release; distribution unlimited. 

This was the extent of the Phase 2 curriculum. Its seemingly over-determined character was in 
fact necessitated by the initial semantic limits of IL; in particular, there was no provision in the 
language or the curriculum framework for a student to take any action not explicitly prescribed 
by the teacher, which made it impossible for a student to act in any way that had not been taught 
to it as a named procedure, thereby ruling out ‘emergent’ behaviors that came about as a result of 
monitoring for salient conditions. In Phase 3, IL semantics were extended in ways that allowed 
for precisely this functionality, and the HD curriculum was broadened in order to take account of 
the new capabilities. A new unit, Unit 3A, of six rungs was added wherein the student was 
taught success criteria for the six repair procedures taught in Unit 3, and the diagnose-and-repair 
procedure of Unit 5 was refined so that success criteria could be used to gate additional repairs in 
a way that reduced performance of redundant or unnecessary repair procedures. Also, another 
new unit, Unit 6, was added to teach trigger conditions for the diagnose-and-repair procedure. It 
consisted in five rungs: the first taught truth conditions for when the satellite tracking task 
schedule had changed; the second and third taught predicates for monitoring alert indicators that, 
if learned, jointly enabled the student to conclude that a readout was alerting as abnormal; the 
fourth related these predicates to trigger conditions for initiating the diagnose and repair 
procedure, and the fifth taught a reactive procedure for applying the modified diagnose-and- repair 
procedure of the new Unit 5, relative to these trigger conditions. 

 
4.5.3 Phase 3 NIM Relaxation Trajectories 
In addition to introducing elements that implemented novel learning challenges, the Phase 3 
curriculum also modified lessons via strategic ablations of NIM protocols. Referred to as 
Relaxation Trajectories (RTs), several were implemented for the HD in Phase 3, notably removal 
of concept-identifying control utterances, removal of argument-signature-revealing utterances, 
removal of explicit telling of sufficient conditions when teaching if/then/else clauses, and 
generalization of utterances stating relevant conditions. 

 
4.5.4 Hidden Domain – Diversity Domains Comparison 
A natural concern in testing system performance scaling is whether the scaling test or tests 
actually belong in the operational range of the functionality being tested. Thus, it was deemed 
important to show that the HD curriculum was in balance no harder than the diversity domain 
(DD) curricula, and that the totality of the learning tasks of the diversity domains was such that a 
student that performed adequately on all of them could be expected to deliver a comparable 
performance on the HD. For this reason, a detailed comparison of the HD and DD curriculum 
frameworks was undertaken. The conclusion was that the coding syntax of the HD framework 
was at least no more complex than the syntax of the most complex DD curriculum lessons, and 
that the induction task required in each HD lesson was homomorphic with respect to some 
induction task in the diversity domains, when the propositional inputs and desired outcomes of the 
tasks were rendered in the IL ontology. 

 

4.6  BL-ISR 
 
In Phase 3, we applied BL methodologies to the ISR domain. This domain provides a good testing 
ground for BL techniques for a number of reasons. Making the most effective use of ISR data 
requires that it be combined with information of diverse sorts – background information on 
patterns of life, geospatial entity data, human intelligence (HUMINT), signal intelligence 
(SIGINT), etc. In addition, analysts discover relevant patterns in the field, making it difficult if 



31 
Approved for public release; distribution unlimited. 

not impossible to pre-program automated search for such patterns. There is therefore a strong 
need for a system that allows the analysts themselves to teach an automated fusion system new 
patterns and rules. The tools developed in BL provide a natural means for accomplishing this 
sort of instruction. The following subsections describe sample scenarios involving the analysis 
of ISR data, the representation of such scenarios in our system, and the instructional interface we 
developed for teaching analytic rules and procedures for such scenarios. 

 
4.6.1 ISR Analysis Background 
ISR activities involve the collection of data in support of military or national security objectives. 
Data are collected through sensors on satellites, manned and unmanned aerial vehicles, or 
ground-based sensors. The data collected comes in a variety of forms, including optical, radar, 
electronic signals, and infra-red. For our purposes, a type of radar data known as GMTI data is 
important. This data is generated by a radar system that detects targets moving on the ground 
(e.g. vehicles). 

 

This data can be used for a variety of purposes. To be useful, the individual detections need to 
be stitched together to form tracks, temporally ordered sequences of detections inferred to be 
from the same target. Track data can be enriched with additional layers of information such as: 

 

  Road networks 
  Locations of interest (e.g. houses, factories) 
  Communication events (e.g. cell phone calls) 
  Threat events (e.g. Improvised Explosive Device (IED) explosions) 
  Pattern of life analysis 
  HUMINT 

 

Data that has been processed and enriched in this way is now at the symbolic level, not the pixel 
level, and BL techniques can be applied to data at this symbolic level to solve learning problems 
of interest to analysts. The additional, non-track, sources of information supply a context for 
interpreting track data. For example, a pattern of life analysis tells the analyst what activities in a 
region are normal – e.g. patterns of traffic to and from a workplace or a mosque, times at which 
farmers plow their fields, transport of livestock across a border, and so on. Patterns that deviate 
from the normal patterns of activity will be of interest to analysts and merit further investigation. 
Similarly, the recent occurrence of certain events such as IED explosions will heighten interest in 
track patterns that might be interpreted as indicators of an impending event (e.g. locals avoiding 
routes that normally have a lot of traffic). 

 
4.6.2 ISR Scenarios 
We investigated a number of scenarios of interest to ISR analysts. Given our available ISR 
simulation data, we were able to represent three scenarios of interest: 

 

  Suspicious Meeting 
o Multiple tracks converge on a remote location that rarely sees traffic 
o Tracks arrive at location close in time to one another 
o One of the tracks starts near a known safe house 

  Clandestine Theft Scenario 
o Track ends in deserted location at unusual time (3 AM) 
o Location is near facility storing materials usable by insurgents 
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  Impending event (social knowledge) 
o Area with normally heavy traffic during a certain time of day (e.g. morning rush 

hour) has significantly decreased traffic 
o Knowledge of an impending event (e.g. an IED explosion) may have spread 

through the local populace 
 

For the first two scenarios, we developed instructional scripts for teaching the concepts involved 
in those scenarios. The instructional sequences for the suspicious meeting and clandestine theft 
scenarios are described in detail in ISR Jr User’s Manual [14]. 

 

4.6.3 System Architecture 
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Figure 3: The BL-ISR Architecture 
 

Figure 3 shows a high level view of the BL ISR architecture. The patterns of interest are taught 
to the student by an analyst, with the BL Framework being used as a messaging and integration 
system for the student and teaching components. Data from multiple heterogeneous sources is 
fed into a tracking/fusion system that produces higher-level representations in symbolic form 
used by the e-student in inferring instances of the learned patterns. The analyst will also teach 
priorities for different patterns and depending on the priorities of inferred pattern instances, the 
e-student will issue requests to cue sensors for additional information or will issue alerts to 
interested parties. 
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4.6.4 Analysis and Instruction Stages 
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Figure 4: The Three Stages in BL-ISR Analysis and Instruction 
 

We broke the analysis process up into three stages, with corresponding types of instruction for 
each stage. We assume analysis starts with the detection of some anomaly (or more generally, 
some pattern of behavior that the analyst believes merits further attention). The first stage of 
analysis is to classify the anomaly – to determine what kind of event is happening. It might be a 
number of vehicles converging on a particular location or a vehicle stopped in a location that is 
normally deserted. After classifying the anomaly, the next analytic task is to determine whether 
there is cause for concern – is the event an indicator of a worrying problem or issue – is 
something suspicious happening that may pose a threat? Finally, the analyst must prioritize the 
alerts in order of their importance. In the BL ISR effort, we investigated different techniques for 
performing the first and second of these analysis tasks – classifying and determining 
suspiciousness. 
 
4.6.5 Instruction Techniques 
A number of instruction techniques were explored to support BL-ISR. These include: 

 

  Natural language instruction: giving a rule in natural language, with feedback about the 
correctness of the generated formalization. This is a version of Learning by Telling. 

  Learning by Example: apply Inductive Logic Programming to learn from a set of labeled 
examples. There is a continuum of teaching techniques between Learning by Telling and 
(pure) Learning by Example since Learning by Example allows the instructor to suggest 
starting rules. The starting rule could be a trivial one (“Classify every track convergence 
as suspicious”) that gets refined by examples; or the starting rule could be close to the 
final, correct rule, in which case a much smaller set of examples is needed to refine the 
rule. 

  Templated Learning of Procedures: This allows the instructor to select, specialize, and 
combine procedures from a library of procedure templates. 

  Learning of Utility Functions: In this form of learning, patterns of behavior, such as 
vehicular movement inferred from GMTI data, are explained in terms of utilities of 
agents (agents prefer this route to get from A to B over this other route). Given the 
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learned utility functions, anomalies are detected when they cannot be explained by the 
utility functions (this agent is taking a route from A to B not predicted by the utility 
functions for paths). 

 

An overarching theme of all these instruction techniques within the BL ISR framework is that 
they are all situated. The meaning of situated instruction is spelled out in the next section. 

 
4.6.6 Situated Instruction 
A common way of extracting knowledge from experts is by using knowledge engineers as 
intermediaries to translate subject matter experts’ knowledge into a formalism usable by 
machines. There are many pitfalls in this approach: Subject Matter Experts (SMEs) have 
difficulty articulating their knowledge in a format that knowledge engineers can grasp, key 
assumptions obvious to the experts may not be made explicit, and the models/representations 
created by the knowledge engineers are difficult for the SMEs to evaluate. Another problem is 
that the patterns that need to be represented might change over time or vary from place to place, 
so that the knowledge that needs to be represented is highly localized and not easily captured 
outside of the specific context in which it is applied. For these reasons, much research on 
knowledge acquisition has focused in the last decade on making it easier for the SMEs 
themselves to enter knowledge into an inference system. This has taken the form of interfaces 
for natural language, or structured natural language; various types of graph-based or 
diagrammatic representations; form-based interfaces; and libraries of knowledge components. 
These techniques have improved the knowledge acquisition task to some degree, but they have 
limitations, such as: 

 

  Diagrammatic representations can quickly become unwieldy and tedious to construct 
  Natural language interfaces can be helpful but are often not sufficient on their own 
  Controlled natural language interfaces present some of the same problems as formal 

representations (user does not understand intended syntax or semantics, or makes 
incorrect assumptions about them) 

 

A more basic problem with these approaches is that SMEs knowledge often cannot be easily 
articulated. Research on the learning of cognitive skills has shown that “as someone becomes an 
expert, knowledge often becomes encoded as perceptual-motor skills rather than rules and 
therefore less accessible to conscious formulation” [15]. Quite frequently, the problem is not the 
lack of a suitable representation language, but rather the SME’s knowledge being inaccessible to 
conscious formulation (because it is embedded in perceptual or motor skills exercised in a 
particular environment). 
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Figure 5: Screenshot of the BL-ISR Instructional Interface 
 

To overcome this problem, the BL ISR instruction framework uses an instructional interface that 
mimics the analyst’s work environment and ties instruction to the actions the analyst performs in 
doing his or her work. Figure 5 shows the instructional interface used in BL ISR. There is a 
map display showing tracks, structures, and other geographic features. The bottom panel displays 
alerts about events. A typical analytic task is to select a particular event and learn more about it, 
first by classifying it as a particular type of event and second by assessing whether there is anything 
suspicious about the event that warrants further investigation. The analyst can fill in this 
information in fields on the right-hand side of the Alerts panel. The interface also allows the analyst 
to switch to Instructional mode, in which she instructs an e-student in the rules used in making 
classifications and assessing suspiciousness (more detailed scenarios can be found in the ISR Jr 
User’s manual). The instruction is situated in a concrete environment familiar to the analyst and 
elicits knowledge from the analyst in the context of the same actions the analyst normally performs 
in doing his or her analysis. The burden of articulating rules is eased by 
virtue of applying machine learning to concrete examples, while at the same time the number of 
training examples needed is minimized through the instructor’s guidance toward the right rules. 

 

4.7  Evaluation 
 
We utilized several methods to evaluate different aspects of the BL program, including studies to 
explore approaches that humans take in teaching other humans as well as approaches they might 
take in teaching an e-student (Section 4.7.1), establishing human-performance baselines on the 
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hidden domain (Section 4.7.2), and automated testing of the e-student on the hidden domain 
(Section 4.7.3). 

 
4.7.1 Approaches to Instruction (Phase 1) 
In Phase 1 we undertook two studies to explore approaches humans take for instructing others. 
The first explored human-human instruction; the second investigated human-e-student instruction.  
In this section we present a summary of our findings. Our published papers [16, 17, 
18] and BAE Systems technical reports [19, 20, 21, 22] provide details of the protocols and 
results. 

 

The focus of the first study was to compare human instruction of other humans to the instruction 
types specified by the NIM created for the Bootstrapping Learning Project. It examined three 
transcripts collected from other sources [23, 24, 25], capturing three types of interaction: human- 
human interaction, naïve human interaction with a human tutor disguised as a machine, and 
human tutoring with an interlocutor (not actually a student) present. We found examples of all 
NIMs within the corpora. In addition, we noted a number of social aspects to the interactions 
(e.g., hedging, humor, and exclamations of surprise) that would not necessarily be exhibited in 
human-e-student instruction. It remains an open question as to whether social considerations 
should be incorporated into a BL system. 

 

The focus of the second study was to gain insight into how a human teacher would instruct an e- 
student [16]. Personnel from the University of Texas at Austin and Cycorp performed an initial 
case study using Blocks World as the domain, echoing the initial curriculum development for the 
e-student, and a Wizard of Oz (WOz) [26] methodology in which a human teacher’s instruction 
were translated into IL for the e-student by a human translator. In addition to the quantitative data 
(e.g., methods used, teaching time, and e-student performance) they collected qualitative data 
about their experience, any difficulties they encountered, and their model of the e-student both 
before and after the teaching session. Five subjects participated, attempting to instruct the 
e-student in two tasks – how to construct a stack of three blocks, and how to build a simple 
doorway by placing a lintel across two stacks of blocks. Each subject was asked to assume the 
role of a human teacher, and was told that the e-student could be considered on the same level as 
that of a bright two year old. All five subjects succeeded in their instruction. Table 1 summarizes 
our observations of the experiment. 

 

Table 1: WOz Observations for a Human Teacher Instructing an E-Student 
 

Observation Impact 

All of the human teachers ended up 
using a bottom-up approach to teaching 
(possibly due to capabilities of the e- 
student). Some human teachers initially 
used a top-down approach but became 
frustrated and reverted to a bottom up 
approach. 

All BL curricula to date have been authored using a 
bottom-up structure. In the Phase II and Phase III 
evaluations with human learners (rather than e- 
students), we have found that human subjects often 
prefer a top-down instructional method. It is an open 
question as to how an e-student might learn with a 
different lesson structure. 

All of the human teachers overestimated 
what the e-student knew and could do, 
assuming knowledge of primitives such 
as “choose a block” or “look for a clear 

We believe the domain-independent e-student needs a 
minimal level of injected knowledge to support 
“basic human competencies”. This can be achieved 
through the use of background knowledge which can 
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space.” be injected or built into an e-student. 

Many of the human teachers employed 
repetition and mnemonics when 
teaching. 

Instructional interfaces should support natural human 
methods for teaching, including support for 
informalities. The Curriculum Team is currently 
exploring this issue. 

The human teachers differed in their 
assumptions regarding the linguistic 
capabilities of the e-student. 

Instructional interfaces should mask the linguistic 
limitations of an e-student and/or a teacher should 
have a way to query an e-students capabilities and 
understanding. 

 

4.7.2 Human Benchmark Experiments (Phases 2 and 3) 
In addition to concerns about whether the HD presented an adequate test of scaling scope, 
concerns also arose in Phase 2 regarding whether the learning requirements of the BL program 
were in fact within the range of capabilities of a competent human adult. In order to address these 
concerns, personnel at BAE Systems, Cycorp and the University of Texas at Austin collaborated 
on adapting the HD curriculum to a multimedia training regimen for human students. Study of the 
outcome of this training showed that human competences with respect to the adapted human 
curriculum were sufficient for the tasks, and in some respects, far in advance of the abilities 
exhibited by any of the automated learners (for example, the human learners propensity for 
converging to appropriate conditional inductions made it possible to entirely dispense with Unit 4 
in the human curriculum). Programmatic interest in the strengths and weaknesses of human 
learners as compared with machine learners justified continuing human subject testing and study 
throughout Phase 3. We published the results of these experiments [16, 
18]; the detailed reports are in BAE Systems technical reports [19, 20, 21, 22]. In this section we 
provide highlights of our findings. 

 

Our primary results established the passing threshold requirement for e-student performance. In 
Phase 2, 28 human subjects participated, establishing a baseline performance requirement of 
91%. In Phase 3, 19 human subjects were tested on the full curriculum, establishing a baseline 
performance requirement of 81%. An additional 40 subjects were tested on subsets of the 
curriculum to investigate NIM-effectiveness. In addition to these baseline requirements for the 
e-student, we identified a number of lessons learned in developing the protocols to conduct our 
experiments and fairly compare human and e-student performance. Human and e-students differ 
in fundamental ways that make it difficult to create analogous contexts without providing one side 
with undue advantages over the other. 

 

First, e-students have perfect memory of all lesson material they have seen. We compensated for 
this in human testing by allowing subjects to take notes and review lessons if desired. Human 
students also have a harder time interpreting formal language or concepts expressed in other 
“unnatural” ways. Because of this, we were forced to produce a more natural version of the e- 
student curriculum for the human students, introducing possible confounding factors into the 
comparison. On the other hand, human students have a greater understanding of the semantics of 
words and have the ability to gain domain knowledge outside the formal channel of the 
curriculum, such as through voice intonation or gestures inadvertently expressed by a human 
teacher. We addressed the issue of leaky semantics by being careful that our choice of terms 
didn’t leak unintentional knowledge, and also by going through several preliminary iterations of 
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the curriculum. Interestingly, increased semantic understanding was also occasionally 
detrimental to human subjects, when the knowledge leaked by terms was misleading. 

 
4.7.3 BL Student Performance (Phases 2 and 3) 
For the e-student, the performance on the final exam in Phase II was 100%. In Phase III, the e- 
student was able to complete all of the tasks correctly. However, when a penalty is introduced for 
rungs that had to be injected, rather than learned, the performance is reduced to 94% (i.e., (rungs – 
injections) / rungs). That is, for 5 of the 7 final exam problems there was one rung where the e-
student was unable to learn the concept and was supplied with the concept description (injected) 
so the e-student was able to continue onto other rungs. It is important to note that in Phase III the 
student was only tested with the relaxed formalisms and the additional Unit 6 on trigger 
conditions. The e-student was not tested on the updated repair procedures in Unit 3 or monitoring 
the time bias in Unit 7. Additionally, in both phases of testing we collected several informal 
testing results, including intermediate rung tests, individual NIM-effectiveness, and diversity 
domain testing results [27, 28, 29, 30, 31, 32]. 

 

4.8  Seedling Efforts 
 
In this section we provide an overview of the findings from two seedling efforts: Framework 
Adoption (Section 4.8.1) and PROWL (Section 4.8.2). Additional details can be found in BAE 
Systems technical reports [33, 34]. 

 
4.8.1 Framework Adoption 
The Framework Adoption seedling effort resulted in a survey of recent research related to 
framework adoption, the development of a prototype Eclipse-based Integrated Development 
Environment (IDE) plug-in, the development of an example system with the widely used 
Hibernate persistence framework along with a scenario for demonstration, and a summary report 
[33]. The survey indicated that there is much new research in the topic of mining source code 
repositories for patterns that has yet to be harnessed for the purpose of distributing knowledge and 
integration into the user experience. The prototype IDE plug-in successfully demonstrated real-
time monitoring of user programming focus, recognition of patterns from a pattern repository, 
and recommendation of the most relevant pattern. The example system, along with the tasks for a 
demonstration scenario and experimental protocol, outline an exploratory investigation of how 
users would interact with a framework adoption system. 

 
4.8.2 PROWL 
Under the first thrust, we investigated PROWL concepts using Army Knowledge Online (AKO). 
In retrospect, AKO may not have been the optimal choice for a vehicle to demonstrate the 
PROWL concepts. The AKO system has received substantial criticism with regards to its speed, 
various areas of functionality, complex security requirements, effectiveness, and compatibility 
with web browsers, particularly from its daily users. The PROWL team also encountered 
significant resistance from users to supporting our experiments, probably due to the ongoing 
performance problems and dissatisfaction with the existing user population with AKO in general. 
Nevertheless, the concepts described and investigated under this seedling have demonstrated the 
promise of this approach applied to large, enterprise text corpora. 
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Under Thrust 2 we explored three broad areas associated with crowd-based activity grounded in 
a military context: 

 

  Shared Sensing – patrollers can see location of other team members and any points of 
interest or adversarial agents they mark up in the environment 

  Coordinated Action – patrollers act in concert with others to achieve a goal, and are able 
to rapidly and continually replan in response to the changing conditions 

  Collective Reasoning – patrollers and their leaders respond to strategic and tactical goals 
and collectively analyze new information by marking up the virtual space in real time 

 

We developed seven uses cases, including one based on a real-world example. We also 
identified two supporting technologies, available today, that would support and enable a 
PROWL-like system to be developed and deployed [34]. 
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5.0 Conclusions and Recommendations 
 
 
The BL electronic student brings virtually no domain knowledge to its learning tasks. The only 
knowledge built-in to the system (i.e., the only place where it depends on the actual “spelling” of 
terms used in the ITL) is with respect to a limited number of control keywords in the ITL (e.g., 
“utterance” or “imperative”). To repeat, no domain knowledge is built in to the learner, it must 
either be taught or provided as background input knowledge. Because of this, the electronic 
learner can be viewed as applying weak methods to solve a domain independent learning problem. 
This view raises interesting questions about the adequacy of information that can be conveyed via 
syntactic structure (i.e., the electronic learner would have learned the exact same concepts had we 
uniformly encoded terms in the curriculum that mean something to humans and replaced them 
with syntactic gobbledygook). 

 

Both the human subject testing and DD-HD comparison efforts of BL raise larger questions 
about the semantic basis for comparing curriculum frameworks. In comparing two curricula, two 
rungs, or two lessons, a fundamental question that must be asked is whether such similarity or 
degree of complexity as is identified is relevant to the cognitive architecture of the student. Where 
complexity is measured in syntactic terms (for example, nesting depth of logical operators), it is at 
least possible that a student’s internal representation might be such that external expressions with 
distinct syntactic complexity would map onto internally isomorphic student representations:  
depending on the student’s processing requirements (and of course, 
upon the intrinsic cost associated with the mapping), the student might therefore be indifferent to 
overt differences in external complexity. And where information is measured probabilistically, 
utilizing metrics explicated by Claude Shannon, it is worth reminding ourselves that these 
probabilities are calculated with reference to a possibility-space that reflects some agent’s model 
of what features are relevant and what world states are and are not possible: ‘information value’ 
is still computed relative to the world model of the agent. Although our curriculum comparison 
efforts assumed that the SRI student’s learning biases essentially approximated those of a 
suitably skilled human, this is really an open question amenable to further study. Also, one of 
the intriguing indications to emerge from the Phase 2 analysis and subsequent DD and HD 
testing is that there may be complementary domains of complexity such that simplification in 
one area is possible only through incurring some representational cost in some other, so that 
hidden expenses may attend many, and perhaps most methodologies for simplifying definitions – 
e.g., eliminating step-wise sequences inside of while loops to accommodate known limitations of 
learning modules may come at a price of introducing a higher ‘nesting factor’ for the target 
definition overall, which might in turn pose difficulties for other learning modules. Phases 2 and 
3 provided us with almost no empirical data regarding questions of how or indeed, whether, such 
representational changes impacted performance in the MABLE system, so this would therefore 
seem to be a rich field for future scientific investigation. 

 

Finally, a fundamental feature of the IL framework is that the same world model to which the 
student has access as background knowledge is also accessed by the teacher, and to implement 
the actions of the world agent. Among other things, this helps to insure the percepts that the 
world agent produces are structured in a way that demonstrably conforms with both the ITL 
explanations generated by the teacher and the target IL definitions that the student is expected to 
compile as the result of the curriculum. It is obvious, however, that the ubiquity of this 
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framework could not be maintained in a scenario wherein the electronic teacher was replaced 
with a human trainer, just as scaling to real-world applications would entail replacing the IL 
world agent with the real world. In such circumstances, even the relative guarantee that the 
teacher and student share a common representational framework would be lost (even if the 
teacher were to use a controlled vocabulary, there would no longer exist a canonical template in 
the form of a common world model against which to test this vocabulary to insure that it is 
deterministically translatable into a defCode implementation). In addition, the real-world 
extension faces the added challenge of insuring that the structures in the actual world that the 
student and teacher manipulate generate a percept stream that is intelligible for both the teacher 
and the student. Such interoperability issues constitute a critical research topic for automated 
learning. 

 

Even with the above caveats, the BL program did demonstrate perhaps surprisingly good and 
general results on both the Phase 2 and Phase 3 hidden domains. These results lend credibility to 
the instructional approach to learning. In addition to the limitations mentioned above there also 
remains the issue of how a learner can produce a result that is deployable in a useful operational 
context. In the BL program the learner simply produced an IL program that was executable in a 
suitable context (e.g., to compute a result, answer a test question, or execute a procedure in the 
simulated world). In the real world a learning system would have to deploy its results in some 
specifically suitable context (e.g., as an executable plugin in some larger performance system, as 
a command sequence to some robotic device, or perhaps as a set of instructions to be performed 
by a human co-agent). The domain independent success and the above limitations point to an 
opportunity to apply the Bootstrapped Learning technologies in a single, specific learning 
environment. Rather than strive for the breadth of applicability as in the original program, 
focusing on learning and performance in a specific domain (e.g., ISR analysis) would provide the 
opportunity to overcome the limitations discussed above, stretch the bootstrapping approach to 
an extended training regimen (extended over both time and conceptual coverage), and provide 
the opportunity to assess success in a concrete domain with specific success criteria. 
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 
ACRONYM DESCRIPTION 

AFRL Air Force Research Laboratory 

AKO Army Knowledge Online 

API Application Program Interface 

ATF Armored Task Force 

BL Bootstrapped Learning 

BL-ISR Bootstrapped Learning Intelligence, Surveillance, and Reconnaissance 

BLADE Bootstrapped Learning Analysis and Curriculum Development Environment 

CDRL Contract Data Requirements List 

CL Curriculum Language 

DARPA Defense Advanced Research Projects Agency 

DD Diversity Domain 

GMTI Ground Moving Target Indicator 

HD Hidden Domain 

HUMINT Human Intelligence 

I2O Information Innovation Office 

IDE Integrated Development Environment 

IED Improvised Explosive Device 

IL InterLingua 

ISR Intelligence, Surveillance, and Reconnaissance 

ISS International Space Station 

ITL InteracTion Language 

Jr Junior 

MA Massachusetts 

MABLE Modular Architecture for Bootstrapped Learning Experiments 

ML Machine Learning 

NIM Natural Instruction Method 

PROWL Probabilistic Relational Ontological Web Language 

RDF Resource Description Framework 

ROL Results of Learning 

RT Relaxation Trajectory 

SIGINT Signal Intelligence 

SME Subject Matter Expert 

TR Technical Report 

UAV Unmanned Aerial Vehicle 
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ACRONYM DESCRIPTION 

VA Virginia 

WOz Wizard of Oz 
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